Optimizing Client-side Resource Utilization in Public Clouds

Swapnil Haria, Mihir Patil, Haseeb Tariq, Anup Rathi

Outline

- Motivation
- Solution
- Implementation
- Evaluation
- Conclusion

Outline

- Motivation
- Solution
- Implementation
- Evaluation
- Conclusion

Cloud Services (Not a distraction anymore¹)

Cloud Services (Not a distraction anymore¹)

- 30 % of total cloud revenue
- Annual revenues crossed \$5 Billion

Cloud Services (Not a distraction anymore¹)

- 30 % of total cloud revenue
- Annual revenues crossed \$5 Billion

Other Players:

- ZERO up-front capital expenses
- On-demand hardware availability
- Flexible pricing options

- ZERO up-front capital expenses
- On-demand hardware availability
- Flexible pricing options

"Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use."

- ZERO up-front capital expenses
- On-demand hardware availability
- Flexible pricing options

"Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use."

Elastic Cloud Compute

- ZERO up-front capital expenses
- On-demand hardware availability
- Flexible pricing options

"Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use."

Elastic Cloud Compute

Limitations

- Allocate resources in fixed sized chunks (EC2 Instances)
 - 1 core, 1GB RAM -> 36 core, 244 GB RAM

- Accurately predict application requirements
 - Undersized VM Performance degradation
 - Oversized VM Extra costs

Multiple applications, multiple VMs, no peace

- Application requirements vary widely
 - Black Friday for e-commerce websites

GOOGLE TRENDS SHOPPING RELATED QUERIES

11/10 -12/31/12 / Interest Over Time* Index

- Application requirements vary widely
 - Black Friday for e-commerce websites
 - Evenings and late nights for Netflix

- Application requirements vary widely
 - Black Friday for e-commerce websites
 - Evenings and late nights for Netflix
 - Slashdot effect!

terrible

- Humans are bad at estimating workload requirements²
- Study of developers at Twitter submitting jobs to datacenter
 - 70% overestimated by 10x
 - 20% underestimated by 5x

Outline

- Motivation
- Solutions
- Implementation
- Evaluation
- Conclusion

Resource as a Service³

- 1. Fine grained cloud reservations
- 2. CPU (cycles), memory (pages), I/O (bandwidth), Time (seconds)

- Where does it stop?
- Reduces wasted costs, but difficult to reason about
- Hardware feasibility issues for service providers

Proposal

Tell me more!

Application Mobility

- On-demand application migration across machines
- Conventional issues -
 - Application state stored in kernel (file descriptors, sockets)
 - Residual dependencies left on source machine
 - Execution Continuity

We need

- Process Isolation (even from kernel)
- Minimal state in kernel

Now where did I see that before?

Where do I find one of these?

Old idea, but making a comeback in Cloud OS

- Drawbridge from Microsoft Research
- MirageOS from University of Cambridge

Both (claim to) support application-migration!

Real-time Management

Monitor application requirements in real-time

Use application migration to organize processes on VMs

Real-time Management

- Monitor application requirements in real-time
 - Relatively easy
 - Working set sizes, idle cycles

- Use application migration to organize processes on VMs
 - Complex
 - Varying configurations and prices of VMs
 - Identifying processes to migrate
 - Downtime / Budgets!

Policies

Steps

- Determine migration events
- Identify process(es) for migration
- Choose target from existing VMs, if possible
- Figure out instance types for creating new VMs

Policies

Metrics (in order of priority)

- Maximize VM utilization
- Satisfy performance guarantees
- Minimize costs

User-Defined Parameters

- Upper limit on cost
- Max downtime per process

Policies

- Single Application per VM
 - Easy to reason about
 - Use naive best fit model to find target VMs
- Multiple Applications per VM
 - Highly complex optimization problem (NP-Hard)
 - Use Heuristics!
 - Use best fit and explore nearby options to find target VMs

Outline

- Motivation
- Solutions
- Implementation
- Evaluation
- Conclusion

Proof of Concept Model

- Linux Containers (Ixc)
 - Emulate isolated processes on Drawbridge/MirageOS
- Checkpoint/Restore in Userspace (CRIU)
 - Checkpoint containers on VM A
 - Migrate files to VM B
 - Restore on VM B

Simulator

- Rapidly validate migration policies
- Evaluate the influence of policy parameters on results
- Written in about 2000 lines of Java code

Policy

Inputs - per VM utilization status
Outputs - Migrate processes, add/remove VMs

Outline

- Motivation
- Solutions
- Implementation
- Evaluation
- Conclusion

Experimental Setup

Proof of concept model(WIP)

- Live migrating SPEC benchmarks running in LXC
- Observed downtime 30 seconds (depending of process size)

Migration Policy Simulations

- Used our own random workload generator
- 2 workloads of each type static, high variability and low variability

Capping Costs

Constraining Downtime

Suppressing Spikes

Show me the money

Baseline

- Used same workloads as the simulation
- Picked from available VMs that would best fit the workloads
- No migrations!
- Cost for 3 days \$45.36

Our solution

- No migration policy requires more than \$15 for 3 days
- 66% money saved!

Conclusions

- Streamlining cloud operations important with increasing scale
- Current laaS reservation models insufficient
- Better support needed from cloud providers
 - Amazon EC2 Container Service
- Migration policies have to optimize in a multi-dimensional space
 - Simple ones offer savings too!

Questions?

BACKUPS

Single application per VM

Effect of cost per day

Migrations cap

Median window variations

Multiple applications per VM

Effect of cost per day

Migrations cap

Median window variations

